/
Forside
/
Karriere
/
Uddannelse
/
Højere uddannelser
/
Nyhedsindlæg
Login
Glemt dit kodeord?
Brugernavn
*
Kodeord
*
Husk mig
Brugerservice
Kom godt i gang
Bliv medlem
Seneste indlæg
Find en bruger
Stil et spørgsmål
Skriv et tip
Fortæl en ven
Pointsystemet
Kontakt Kandu.dk
Emnevisning
Kategorier
Alfabetisk
Karriere
Interesser
Teknologi
Reklame
Top 10 brugere
Højere uddannelser
#
Navn
Point
1
Nordsted1
1588
2
erling_l
1224
3
ans
1150
4
dova
895
5
gert_h
800
6
molokyle
661
7
berpox
610
8
creamygirl
610
9
3773
570
10
jomfruane
570
volumen af omdrejningslegeme og specifik o~
Fra :
Jens
Dato :
14-07-03 13:13
Jeg sidder og regner en stak gamle eksamensopgaver og er gået lidt død i en
der umidelbart virker simpel.
Håber nogen her kan give et skub i den rigtige retning.
f(x)=sin(x*pi) volumen af omdrejningslegemet for 0>=x=>1 skal beregnes.
Da volumen er lig integralet fra 0 til 1 af f(x)^2 findes f(x)^2, som er
sin(x*pi)^2
Det udtryk skal så integreres og jeg kaster mig bare ud i en substitution og
sætter u=x*pi så jeg får
f(x)^2=sin(u)^2, men det gavner jo ikke meget da jeg stadig reelt har
sin(u)*sin(u) .
Istedet kan jeg sætte u=sin(x*pi) så jeg får g(x)=u^2*du, men nu skal jeg
difrentiere sin(x*pi) hvilket naturligvis kan gøres, men er en
tilsyneladende alt for stor omvej... eller er det?
Jeg føler mig ret overbevist om at der er en ret simpel løsning som jeg bare
ikke kan se lige nu. Hvis der er nogen her i gruppen som kan give mig det
nødvendige puf, så vil det være en stor hjælp.
På forhånd tak for enhver hjælp.
Martin C. Petersen (
14-07-2003
)
Kommentar
Fra :
Martin C. Petersen
Dato :
14-07-03 13:39
"Jens" <a@a.a> skrev i en meddelelse news:beu6p4$11o6$1@news.cybercity.dk...
> f(x)=sin(x*pi) volumen af omdrejningslegemet for 0>=x=>1 skal beregnes.
> Da volumen er lig integralet fra 0 til 1 af f(x)^2 findes f(x)^2, som er
> sin(x*pi)^2
Skal der ikke lige ganges et pi på?
> Det udtryk skal så integreres og jeg kaster mig bare ud i en substitution
og
> sætter u=x*pi så jeg får
> f(x)^2=sin(u)^2, men det gavner jo ikke meget da jeg stadig reelt har
> sin(u)*sin(u) .
Additionsformlen for cosinus giver:
cos(2u) = cos^2(u) - sin^2(u) = 1 - 2sin^2(u) => sin^2(u) = 1/2-cos(2u)/2
Hvis du bruger dette, er det ikke svært at integrere sin^2..
Martin
Preben Mikael Bohn (
14-07-2003
)
Kommentar
Fra :
Preben Mikael Bohn
Dato :
14-07-03 14:06
Jens wrote:
> f(x)=sin(x*pi) volumen af omdrejningslegemet for 0>=x=>1 skal beregnes.
> Da volumen er lig integralet fra 0 til 1 af f(x)^2 findes f(x)^2, som er
> sin(x*pi)^2
Jeg får i øvrigt resultatet til pi/2...
Med venlig hilsen Preben
Søg
Alle emner
Karriere
Uddannelse
Højere uddannelser
Indstillinger
Spørgsmål
Tips
Usenet
Reklame
Statistik
Spørgsmål :
177559
Tips :
31968
Nyheder :
719565
Indlæg :
6408935
Brugere :
218888
Månedens bedste
Årets bedste
Sidste års bedste
Copyright © 2000-2024 kandu.dk. Alle rettigheder forbeholdes.