/ Forside / Karriere / Uddannelse / Højere uddannelser / Nyhedsindlæg
Login
Glemt dit kodeord?
Brugernavn

Kodeord


Reklame
Top 10 brugere
Højere uddannelser
#NavnPoint
Nordsted1 1588
erling_l 1224
ans 1150
dova 895
gert_h 800
molokyle 661
berpox 610
creamygirl 610
3773 570
10  jomfruane 570
Mat problem
Fra : Jens Pedersen


Dato : 22-09-02 19:45

Hej Ng,

Jeg sidder her med en opgave, som jeg er kørt fast i. Jeg skal vise, at de
linjestykker AB og CD, der afskæres at en ret linje mellem koordinatakserne
og grafen for funktionen f(x)=1/x er lige lange.
Jeg kalder koordinaterne A(0,b), B(p,1/p), C(-b/a,0) og D(q,1/q), idet jeg
benytter, at den rette linje kan skrives på formen y=ax+b. Jeg kan sagtens
finde udtryk for længderne af linjestykkerne vha. pythagoras, men det
hjælper mig ikke til at vise, de er lige lange. Er der en, der kan give et
lille hint?

Med Venlig Hilsen
Jens Pedersen



 
 
Jeppe Stig Nielsen (22-09-2002)
Kommentar
Fra : Jeppe Stig Nielsen


Dato : 22-09-02 21:24

Jens Pedersen wrote:
>
> Jeg sidder her med en opgave, som jeg er kørt fast i. Jeg skal vise, at de
> linjestykker AB og CD, der afskæres at en ret linje mellem koordinatakserne
> og grafen for funktionen f(x)=1/x er lige lange.
> Jeg kalder koordinaterne A(0,b), B(p,1/p), C(-b/a,0) og D(q,1/q), idet jeg
> benytter, at den rette linje kan skrives på formen y=ax+b. Jeg kan sagtens
> finde udtryk for længderne af linjestykkerne vha. pythagoras, men det
> hjælper mig ikke til at vise, de er lige lange. Er der en, der kan give et
> lille hint?

Jeg forstår opgaven sådan at det hele foregår i første kvadrant hvor
linjen y=ax+b er en sekant til hyperbelgrenen y=1/x , x>0.
Derfor er naturligvis b>0 og a<0.

(Hvis vi er i tredje kvadrant er b<0 og a<0.)

Linjens skæring med akserne er A og C med de koordinater du beskriver.

Linjens skæring med grafen (hyperbelgrenen) kan man finde ved at løse
andengradsligningen:

ax+b = 1/x

De to løsninger er hvad du har kaldt p og q. Dette må være dit hint.

--
Jeppe Stig Nielsen <URL:http://jeppesn.dk/>. «

"Je n'ai pas eu besoin de cette hypothèse (I had no need of that
hypothesis)" --- Laplace (1749-1827)

Henning Makholm (23-09-2002)
Kommentar
Fra : Henning Makholm


Dato : 23-09-02 14:22

Scripsit "Jens Pedersen" <osterejen@hotmail.com>

> Jeg sidder her med en opgave, som jeg er kørt fast i. Jeg skal vise, at de
> linjestykker AB og CD, der afskæres at en ret linje mellem koordinatakserne
> og grafen for funktionen f(x)=1/x er lige lange.

Alternativ til Jeppes hint (som er udmærket, men indebærer mere
regnearbejde end jeg kan holde i hovedet på en gang):

1. Uden tab af generalitet kan vi gå ud fra at det højre skæringspunkt
er i C=(1,1): Ellers klem hele koordinatsystem sammen med en passende
faktor i x-retningen og stræk det tilsvarende ud i y-retningen, så
hyperblen er invariant overfor transformationen. Sådan en lineær
transformation ændrer ikke på forholdet mellem stykker af samme
linje.

2. Nu har det venstre skæringspunkt så koordinaterne (1/a,a) for a>1.
Linjen der går gennem B=(1/a,a) og C=(1,1) har hældning -1/a
[hvorfor?]. Derfor rammer den x-aksen i D=(1+1/a,0). Projicer de
fire punkter A-D ned på x-aksen og vift så passende med hænderne
om at projektionen også er lineær.

--
Henning Makholm "Vend dig ikke om! Det er et meget ubehageligt syn!"

Søg
Reklame
Statistik
Spørgsmål : 177560
Tips : 31968
Nyheder : 719565
Indlæg : 6408946
Brugere : 218888

Månedens bedste
Årets bedste
Sidste års bedste