/ Forside / Interesser / Andre interesser / Politik / Nyhedsindlæg
Login
Glemt dit kodeord?
Brugernavn

Kodeord


Reklame
Top 10 brugere
Politik
#NavnPoint
vagnr 20140
molokyle 5006
Kaptajn-T.. 4653
granner01 2856
jqb 2594
3773 2444
o.v.n. 2373
Nordsted1 2327
creamygirl 2320
10  ans 2208
10 ting du ikke vidste om kernekraft
Fra : Jesper Ørsted


Dato : 18-11-11 19:35

1. 95% af det brugte kernebrændsel er identisk med ny brændsel og kan
umiddelbart genbruges og dermed reducere affaldsmængderne med faktor 20
og den eneste del af det brugte brændsel der ikke fuldt ud kan genbruges
er fissile produkter, som typisk udgør 3-4% af det brugte brændsel og
efter 600 år er det ligesålidt radioaktivt som naturligt uranmalm.

2. Hvis man havde fortsat med udbygningstakten af kernekraft, som man
havde i 70'erne , så ville 2020 CO2 målene allerede være nået - helt
uden andre tiltag!

3. Langlivet radioaktivt affald er altid lavradioaktivt og kortlivet
affald er altid højradioaktivt. Et stof med en halveringstid på 1 år er
1.000.000 gange så radioaktivt som et stof med en halveringstid på
1.000.000 år.

4. Ulykker som på Fukushima Dai-Ichi er 100% forbyggelige, hvis blot én
af følgende ting havde været til stede, så var der ikke sket nogen
radioaktivt udslip.
a) Passiv konveksionskøling som ikke kræver strøm til f.eks. at åbne
ventiler
b) Generatorer som var beskyttet mod oversvømmelse, enten via
indkapsling eller ved høj placering.
c) Ekstern strømforsyning, som var beskyttet mod nedrivning, overrivning
eller kortslutning pga indtrængende vand (i parantes bemærket var det
dét der reddede Fukushima Dai-Ni fra nedsmeltning.).
d) Core Catcher, der opsamler den radioaktive smeltemasse og afkøler den
passivt, standard på alle nye 3. generationsreaktorer der bygges i dag.

5. Hvis der går hul på tryktanken på et kernekraftværk, sker der kun
det, at der strømmer en dampstråle ud, sålænge der ikke er hul på
brændselsstavene samtidigt sker der ingen radioaktivt udslip.

6. Hvis der kommer radioaktiv forurening i grundvandet er det en fordel
at forureningen spreder sig mest muligt, fordi jo større fortynding,
desto hurtigere fortyndes det ned under den naturlige baggrundsståling.
Det er meget nemt at måle, bare sæt en geigertæller til vandhanen. Hvis
man derimod leder efter kemisk forurening koster en bredspektret
undersøgelse 20.000 kr og tager adskillige timer, hvis ikke der er kø på
laboratoriet fordi der er flere prøver der skal undersøges.

7. Indbyggerne i den iranske by Ramsar ved Det Kaspiske Hav modtager
årligt en stråling på op til 260 mSv fra den naturlige
baggrundsstråling, uden det giver anledning til sundhedsmæssige
problemer. Til sammenligning må en ansat i atomindustrien kun modtage en
stråledosis på 200 mSv om året.

8. Hvis man lukker alle verdens kernekraftværker, så vil udledningen af
CO2 stige med 17% og den globale opvarmning vil stige.

9. Japanerne har gennem praktisk forsøg dokumenteret, at der kan hentes
ubegrænsede mængder af uran fra havet. Prisen er højere end
verdensmarkedspriserne på uran i dag. Men hvis man gik over til at bruge
det, så ville det kun betyde en fordyrelse på få øre pr kWh, fordi
størstedelen af omkostningerne ved kernekraft er kapitalomkostninger.

10. Der er intet kendt eksempel på at civil kernekraft har været anvendt
som springbræt til fremstilling af kernevåben og der er intet kendt
eksempel på at reaktorgrad plutonium nogensinde har været brugt til
fremstilling af kernevåben.

--
Jesper
*********************************************
Hvad udad tabes skal indad vindes.
E. Dalgas

 
 
Jan Rasmussen (18-11-2011)
Kommentar
Fra : Jan Rasmussen


Dato : 18-11-11 22:00

""Jesper Ørsted"" <shefan@hotmail.com> skrev i en meddelelse
news:1kay124.192u3uu1fq6ycoN%shefan@hotmail.com...

11. Neutrino radiation from nuclear power plants(NPP)
http://www.scribd.com/doc/49587116/neutrino-paper

The fusion process in the sun is a sort of reversal of the fission process
within nuclear reactors, and the neutrinos produced behave somehow in
an opposite way. Consequently, neutrinos from the sun are plainly called
"neutrinos", whereas neutrinos from nuclear reactors are called "anti-neutrinos"
A typical nuclear power plants has a thermal power of about 4000 MW (Mega-Watts).
Thermal power is the amount of heat generated within the coolant by
the fisson process.

But it is not only heat that is generated inside the reactor.
The total reactor power is about 4250 MW.

From this energy, about 250 MW or roughly 6%, is radiated away
by the neutrinos. It just disappears from the reactor.
The thermal power is delivered to theturbine and generator.
About 1300 MW of electricity is produced by the generator,
the remaining 2700 MW is waste heat and is dumped into a river,
heating it a little, or is evaporated into clouds within cooling towers.

About 200 - 250 MW is emitted into the environment as neutrino radiation,
which cannot be shielded.

Today, it is generally assumed that the 200 or 250 MW of neutrino
radiation from an NPP just penetrates all material, without leaving a
trace at all. The energy just seems to disappear into the void.

Please try to imagine what we are talking about: 200 MW of energy delivers
enough heat to melt 200 tons of steel per hour, or enough electricity to
fuel 2 Million 100 Watt light bulbs.

And this energy, as everybody believes, disappears?

The question at hand is, whether this energy really disappears for good,
or else, what happens if it does react in some way with the environment?

If some of the neutrinos could react withsome material in the
surroundings,than at least a part of the 200 MW would reappear in the
environment, probably as induced radioactivity.

Jan Rasmussen



Jesper Ørsted (19-11-2011)
Kommentar
Fra : Jesper Ørsted


Dato : 19-11-11 01:53

Jan Rasmussen <invalid@invalid.com> wrote:

> ""Jesper Ørsted"" <shefan@hotmail.com> skrev i en meddelelse
> news:1kay124.192u3uu1fq6ycoN%shefan@hotmail.com...
>
> 11. Neutrino radiation from nuclear power plants(NPP)
> http://www.scribd.com/doc/49587116/neutrino-paper
>
> The fusion process in the sun is a sort of reversal of the fission process
> within nuclear reactors, and the neutrinos produced behave somehow in an
> opposite way. Consequently, neutrinos from the sun are plainly called
> "neutrinos", whereas neutrinos from nuclear reactors are called
> "anti-neutrinos" A typical nuclear power plants has a thermal power of
> about 4000 MW (Mega-Watts). Thermal power is the amount of heat generated
> within the coolant by the fisson process.
>
> But it is not only heat that is generated inside the reactor. The total
> reactor power is about 4250 MW.
>
> From this energy, about 250 MW or roughly 6%, is radiated away by the
> neutrinos. It just disappears from the reactor. The thermal power is
> delivered to theturbine and generator. About 1300 MW of electricity is
> produced by the generator, the remaining 2700 MW is waste heat and is
> dumped into a river, heating it a little, or is evaporated into clouds
> within cooling towers.
>
> About 200 - 250 MW is emitted into the environment as neutrino radiation,
> which cannot be shielded.
>
> Today, it is generally assumed that the 200 or 250 MW of neutrino
> radiation from an NPP just penetrates all material, without leaving a
> trace at all. The energy just seems to disappear into the void.
>
> Please try to imagine what we are talking about: 200 MW of energy delivers
> enough heat to melt 200 tons of steel per hour, or enough electricity to
> fuel 2 Million 100 Watt light bulbs.
>
> And this energy, as everybody believes, disappears?
>
> The question at hand is, whether this energy really disappears for good,
> or else, what happens if it does react in some way with the environment?
>
> If some of the neutrinos could react withsome material in the
> surroundings,than at least a part of the 200 MW would reappear in the
> environment, probably as induced radioactivity.
>
> Jan Rasmussen

Neutrinoer afgiver ingen energi når de går igennem et menneske, de
interagerer slet ikke med cellerne i kroppen og er derfor totalt
uskadelige. Undersøgelser har da også vist, at ansatte på
kernekraftværker har et bedre helbred end befolkningen som helhed, selv
når man medregner alder og andre socioøkonomiske aspekter.
--
Jesper
*********************************************
Hvad udad tabes skal indad vindes.
E. Dalgas

Steen A. Thomsen (19-11-2011)
Kommentar
Fra : Steen A. Thomsen


Dato : 19-11-11 10:08

On Sat, 19 Nov 2011 01:52:45 +0100, Jesper Ørsted wrote:

> Jan Rasmussen <invalid@invalid.com> wrote:
>
>> ""Jesper Ørsted"" <shefan@hotmail.com> skrev i en meddelelse
>> news:1kay124.192u3uu1fq6ycoN%shefan@hotmail.com...
>>
>> 11. Neutrino radiation from nuclear power plants(NPP)
>> http://www.scribd.com/doc/49587116/neutrino-paper
>>
>> The fusion process in the sun is a sort of reversal of the fission process
>> within nuclear reactors, and the neutrinos produced behave somehow in an
>> opposite way. Consequently, neutrinos from the sun are plainly called
>> "neutrinos", whereas neutrinos from nuclear reactors are called
>> "anti-neutrinos" A typical nuclear power plants has a thermal power of
>> about 4000 MW (Mega-Watts). Thermal power is the amount of heat generated
>> within the coolant by the fisson process.
>>
>> But it is not only heat that is generated inside the reactor. The total
>> reactor power is about 4250 MW.
>>
>> From this energy, about 250 MW or roughly 6%, is radiated away by the
>> neutrinos. It just disappears from the reactor. The thermal power is
>> delivered to theturbine and generator. About 1300 MW of electricity is
>> produced by the generator, the remaining 2700 MW is waste heat and is
>> dumped into a river, heating it a little, or is evaporated into clouds
>> within cooling towers.
>>
>> About 200 - 250 MW is emitted into the environment as neutrino radiation,
>> which cannot be shielded.
>>
>> Today, it is generally assumed that the 200 or 250 MW of neutrino
>> radiation from an NPP just penetrates all material, without leaving a
>> trace at all. The energy just seems to disappear into the void.
>>
>> Please try to imagine what we are talking about: 200 MW of energy delivers
>> enough heat to melt 200 tons of steel per hour, or enough electricity to
>> fuel 2 Million 100 Watt light bulbs.
>>
>> And this energy, as everybody believes, disappears?
>>
>> The question at hand is, whether this energy really disappears for good,
>> or else, what happens if it does react in some way with the environment?
>>
>> If some of the neutrinos could react withsome material in the
>> surroundings,than at least a part of the 200 MW would reappear in the
>> environment, probably as induced radioactivity.
>>
>> Jan Rasmussen
>
> Neutrinoer afgiver ingen energi når de går igennem et menneske, de
> interagerer slet ikke med cellerne i kroppen og er derfor totalt
> uskadelige. Undersøgelser har da også vist, at ansatte på
> kernekraftværker har et bedre helbred end befolkningen som helhed, selv
> når man medregner alder og andre socioøkonomiske aspekter.

Disse undersøgelser kunne jeg godt tænke mig at se (hvis de da eksisterer).

Jan Rasmussen (19-11-2011)
Kommentar
Fra : Jan Rasmussen


Dato : 19-11-11 15:32

""Jesper Ørsted"" <shefan@hotmail.com> skrev i en meddelelse
news:1kayif8.u3nluu2bl7k0N%shefan@hotmail.com...
> Jan Rasmussen <invalid@invalid.com> wrote:
>
>> ""Jesper Ørsted"" <shefan@hotmail.com> skrev i en meddelelse
>> news:1kay124.192u3uu1fq6ycoN%shefan@hotmail.com...
>>
>> 11. Neutrino radiation from nuclear power plants(NPP)
>> http://www.scribd.com/doc/49587116/neutrino-paper
>>

>> Today, it is generally assumed that the 200 or 250 MW of neutrino
>> radiation from an NPP just penetrates all material, without leaving a
>> trace at all. The energy just seems to disappear into the void.
>
> Neutrinoer afgiver ingen energi når de går igennem et menneske, de
> interagerer slet ikke med cellerne i kroppen og er derfor totalt
> uskadelige.

Ja det er rigtigt, set med videnskabelige 2011 briller, men
sætninger som denne: "If neutrinos are the culprits, it means
we are falling terribly short of understanding the true nature of
these subatomic particles." fra nedenstående artikel, lyder derimod
ikke som om vi har helt styr på dem i nu. Og hvad nu med de kollisioner
af anti-neutrinos fra en reaktor der kollidere med solar-neutrinos, som
man må gå ud fra vil forgår i nærheden af et atomkraftværk.

What happens in neutrino antineutrino annihilation ?
"The two particles meet at a single point and annihilate each other,
producing a virtual Z boson, which is the neutral (i.e. no electric charge)
carrier of the weak nuclear force. This Z boson then immediately decays
to produce another particle/antiparticle pair, either a new pair of neutrinos,
two charged leptons, or a quark/antiquark pair.What you can produce depends
on how much energy there is from the colliding neutrinos"

http://news.discovery.com/space/is-the-sun-emitting-a-mystery-particle.html

Is the Sun Emitting a Mystery Particle?
Analysis by Ian O'Neill - Wed Aug 25, 2010

When probing the deepest reaches of the Cosmos or magnifying our
understanding of the quantum world, a whole host of mysteries present
themselves. This is to be expected when pushing our knowledge of the
Universe to the limit.

But what if a well-known -- and apparently constant -- characteristic of
matter starts behaving mysteriously?

This is exactly what has been noticed in recent years; the decay rates
of radioactive elements are changing. This is especially mysterious as
we are talking about elements with "constant" decay rates -- these
values aren't supposed to change. School textbooks teach us this from an
early age.

This is the conclusion that researchers from Stanford and Purdue
University have arrived at, but the only explanation they have is even
weirder than the phenomenon itself: The sun might be emitting a
previously unknown particle that is meddling with the decay rates of
matter. Or, at the very least, we are seeing some new physics.

Many fields of science depend on measuring constant decay rates. For
example, to accurately date ancient artifacts, archaeologists measure
the quantity of carbon-14 found inside organic samples at dig sites.
This is a technique known as carbon dating.

Carbon-14 has a very defined half-life of 5730 years; i.e. it takes
5,730 years for half of a sample of carbon-14 to radioactively decay
into stable nitrogen-14. Through spectroscopic analysis of the ancient
organic sample, by finding out what proportion of carbon-14 remains, we
can accurately calculate how old it is.

But as you can see, carbon dating makes one huge assumption: radioactive
decay rates remain constant and always have been constant. If this new
finding is proven to be correct, even if the impact is small, it will
throw the science community into a spin.

Interestingly, researchers at Purdue first noticed something awry when
they were using radioactive samples for random number generation. Each
decay event occurs randomly (hence the white noise you'd hear from a
Geiger counter), so radioactive samples provide a non-biased random
number generator.

However, when they compared their measurements with other scientists'
work, the values of the published decay rates were not the same. In
fact, after further research they found that not only were they not
constant, but they'd vary with the seasons. Decay rates would slightly
decrease during the summer and increase during the winter.

Experimental error and environmental conditions have all been ruled out
-- the decay rates are changing throughout the year in a predictable
pattern. And there seems to be only one answer.

As the Earth is closer to the sun during the winter months in the
Northern Hemisphere (our planet's orbit is slightly eccentric, or
elongated), could the sun be influencing decay rates?

In another moment of weirdness, Purdue nuclear engineer Jere Jenkins
noticed an inexplicable drop in the decay rate of manganese-54 when he
was testing it one night in 2006. It so happened that this drop occurred
just over a day before a large flare erupted on the sun.

Did the sun somehow communicate with the manganese-54 sample? If it did,
something from the sun would have had to travel through the Earth (as
the sample was on the far side of our planet from the sun at the time)
unhindered.

The sun link was made even stronger when Peter Sturrock, Stanford
professor emeritus of applied physics, suggested that the Purdue
scientists look for other recurring patterns in decay rates. As an
expert of the inner workings of the sun, Sturrock had a hunch that solar
neutrinos might hold the key to this mystery.

Sure enough, the researchers noticed the decay rates vary repeatedly
every 33 days -- a period of time that matches the rotational period of
the core of the sun. The solar core is the source of solar neutrinos.

It may all sound rather circumstantial, but these threads of evidence
appear to lead to a common source of the radioactive decay rate
variation. But there's a huge problem with speculation that solar
neutrinos could impact decay rates on Earth: neutrinos aren't supposed
to work like that.

Neutrinos, born from the nuclear processes in the core of the sun, are
ghostly particles. They can literally pass through the Earth unhindered
as they so weakly interact. How could such a quantum welterweight have
any measurable impact on radioactive samples in the lab?

In short, nobody knows.

If neutrinos are the culprits, it means we are falling terribly short of
understanding the true nature of these subatomic particles. But if (and
this is a big if) neutrinos aren't to blame, is the sun generating an
as-yet-to-be- discovered particle?

If either case is true, we'll have to go back and re-write those
textbooks.

Source: Stanford University:
http://news.stanford.edu/news/2010/august/sun-082310.html
The strange case of solar flares and radioactive elements.

Mystisk kraft fra Solens indre påvirker radioaktive stoffer på Jorden - 30. aug 2010
http://ing.dk/artikel/111387-mystisk-kraft-fra-solens-indre-paavirker-radioaktive-stoffer-paa-jorden
"En tilfældig opdagelse har fået amerikanske forskere til at tabe underkæben.
I Solens indre foregår et eller andet, der påvirker radioaktive stoffer som kulstof-14.
Men det burde bare ikke kunne lade sig gøre.[..]


Jan Rasmussen



Bo Warming (19-11-2011)
Kommentar
Fra : Bo Warming


Dato : 19-11-11 04:05

On Fri, 18 Nov 2011 21:59:33 +0100, "Jan Rasmussen"
<invalid@invalid.com> wrote:

>""Jesper Ørsted"" <shefan@hotmail.com> skrev i en meddelelse
>news:1kay124.192u3uu1fq6ycoN%shefan@hotmail.com...
>
>11. Neutrino radiation from nuclear power plants(NPP)
> http://www.scribd.com/doc/49587116/neutrino-paper
>
>The fusion process in the sun is a sort of reversal of the fission process
>within nuclear reactors, and the neutrinos produced behave somehow in
>an opposite way. Consequently, neutrinos from the sun are plainly called
>"neutrinos", whereas neutrinos from nuclear reactors are called "anti-neutrinos"
>A typical nuclear power plants has a thermal power of about 4000 MW (Mega-Watts).
>Thermal power is the amount of heat generated within the coolant by
>the fisson process.
>
>But it is not only heat that is generated inside the reactor.
>The total reactor power is about 4250 MW.
>
>From this energy, about 250 MW or roughly 6%, is radiated away
>by the neutrinos. It just disappears from the reactor.
>The thermal power is delivered to theturbine and generator.
>About 1300 MW of electricity is produced by the generator,
>the remaining 2700 MW is waste heat and is dumped into a river,
>heating it a little, or is evaporated into clouds within cooling towers.
>
>About 200 - 250 MW is emitted into the environment as neutrino radiation,
>which cannot be shielded.
>
>Today, it is generally assumed that the 200 or 250 MW of neutrino
>radiation from an NPP just penetrates all material, without leaving a
>trace at all. The energy just seems to disappear into the void.
>
>Please try to imagine what we are talking about: 200 MW of energy delivers
>enough heat to melt 200 tons of steel per hour, or enough electricity to
>fuel 2 Million 100 Watt light bulbs.
>
>And this energy, as everybody believes, disappears?
>
>The question at hand is, whether this energy really disappears for good,
>or else, what happens if it does react in some way with the environment?
>
>If some of the neutrinos could react withsome material in the
>surroundings,than at least a part of the 200 MW would reappear in the
>environment, probably as induced radioactivity.
>
>Jan Rasmussen
>

Men r nogen døde af den slags? NEJ

Søg
Reklame
Statistik
Spørgsmål : 177558
Tips : 31968
Nyheder : 719565
Indlæg : 6408921
Brugere : 218888

Månedens bedste
Årets bedste
Sidste års bedste