Bertel Lund Hansen wrote:
>
> >Hvis man skal omregne fra tone til frekvens er det vel ikke nok
> >at regne f.eks.:
>
> >A1 = 440hz A2 = 880hz
>
> >440/12 = 36.6
>
> Det er forkert. For at regne fra én tone til den et halvt trin
> højere oppe (nabotonen) skal du gange med 12. rod af 2 som er ca.
> 1,05946
Netop. Man kan også sige at den tone der ligger præcis j halvtonetrin
over kammertonen (a1, enstreget a), har frekvensen
f = (440 Hz)·2^(j/12)
hvor j evt. kan være negativ.
For eksempel har enstreget d, d1, en værdi på j = -7 , så frekvensen
bliver (440 Hz)·2^(-7/12)=293,7 Hz.
(Ideelt set burde det være en fuldkommen/ren kvint, og så skulle fre-
kvensen have været (440 Hz)/(3/2)=293,3333 Hz, men sådan er det altså
ikke i moderne musik.)
Værdierne for j kan man finde i denne tabel:
c cis d dis e f fis g gis a ais h
subkontraoktav -48 -47 -46
kontraoktav -45 -44 -43 -42 -41 -40 -39 -38 -37 -36 -35 -34
store oktav -33 -32 -31 -30 -29 -28 -27 -26 -25 -24 -23 -22
lille oktav -21 -20 -19 -18 -17 -16 -15 -14 -13 -12 -11 -10
enstreget oktav -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2
tostreget oktav 3 4 5 6 7 8 9 10 11 12 13 14
trestreget oktav 15 16 17 18 19 20 21 22 23 24 25 26
firstreget oktav 27 28 29 30 31 32 33 34 35 36
I øvrigt kan man også regne den anden vej. For eksempel svarer en fre-
kvens på f=1000 Hz (høres ofte som prøvesignal på tv) til en værdi af
j på j=14,21. Det vil sige at tonen er 21/100 halvtone højere end et
h2. Så vidt jeg véd, siger man at tonen er 21 cent højere end h2.
--
Jeppe Stig Nielsen <URL:
http://jeppesn.dk/>. «
"Je n'ai pas eu besoin de cette hypothèse (I had no need of that
hypothesis)" --- Laplace (1749-1827)