Martin Jorgensen wrote:
>>Model: Vi har en krukke med (mange) kugler i - røde og blå. Andelen af
>>røde kugler, p, er stokastisk: uniformt fordelt i [0;1], men ellers
>>ukendt. Vi trækker nu A røde kugler og B blå kugler.
>
>
> Uniformt fordel i [0;1]? Arealet under grafen skal være lig 1. Betyder det
> så ikke at p = 0.5 for at trække hhv. en blå eller rød kugle, når du skriver
> at fordelingen er uniform? Et interval på 0 og 1 (diskret fordeling) er jo
> kun 2 udfald => p = ½ hvis fordelingen er uniform???
Jeg har fortrudt at jeg kaldte parametren p.
Jeg vil, inspireret af Henning Makholms indlæg, fra nu af kalde den X. X
er uniformt fordelt mellem 0 og 1.
Sandsynligheden for at trække en rød vil ganske rigtigt være ½.
Men hvis første kugle er rød, så er der 2/3 chance for at den næste også
er rød (ikke så svært at regne ud - jeg giver detaljer på anmodning)
Du taler om sandsynligheden for at trække en rød, når X ligger fast.
Men eksperimentet her er omvendt: Antal røde og blå trukne kugler ligger
fast, og vi skal vurdere sandsynligheden for at X<½.
X er en ukendt parameter for krukken. Jo flere kugler vi trækker, desto
bedre kan vi estimere X.
> Hmm... Jeg er lidt forvirret over din måde at stille opgaven op... Du
> skriver ikke engang hvor mange røde eller blå kugler der er. Kun at andelen
> er stokastisk?
Præcis. Andelen af røde kugler, X, er ukendt.
A priori ved vi blot at X er uniformt fordelt i [0;1] (det lover
købmanden, som solgte os krukken)
>>Jeg er kommet frem til at det er relevant at se på integralet
>>\int_0^{1/2} x^A (1-x)^B dx.
> Prøv at forklare
> hvorfor dit integrale ser sådan ud. Så tror jeg godt at jeg kan supplere med
> noget...
Jeg vil gøre et forsøg.
Vi vælger en tilfældig krukke, parametriseret ved den stokastiske
variabel X. Vi kan ikke observere værdien af X, andet end gennem
udtrækninger af kugler.
Vi har gjort en observation OBS, nemlig at vi trak A røde og B blå.
Vi skal beregne sandsynligheden for X<½, givet denne observation.
P(X<½ | OBS) = P(OBS | X<½) * P(X<½) / P(OBS)
Her kommer integralet ind i billedet:
P(OBS | X<½) * P(X<½) = int_0^{1/2} P(OBS | X=x) dx
= int_0^{1/2} x^A (1-x)^B
forudsat at rækkefølgen af kuglerne regnes som en del af observationen.
(hvis vi ikke regner kuglernes rækkefølge med, så giver det blot en
binomial-faktor oven i, som ophæves af en tilsvarende faktor på P(OBS)).
> P følger ikke en normal-fordeling?
?? P er et TAL, der afhænger af A og B. Givet A og B er P en konstant.
Du kan skrive P(A,B).
Hvis A=B, er P(A,B)=1/2.
Man kan også regne ud at P(1,0)=1/4 (Læses: hvis vi trak en rød kugle,
og intet andet, så er den kun 1/4 chance for at der er flest blå kugler)
> Hvis det er en opgave du regner fra et
> sted, kan du så ikke bare lige skrive opgaveteksten? Det kan selvfølgelig
> godt være at det bare er mig som ikke forstår problemet...
Det er ikke en skoleopgave, men som sagt et problem der opstår i en
konkret kontekst, som jeg er ved at finde en løsning på.
Jeg kan godt røbe hvad det er
.
I en meningsmåling har kandidat rød modtaget A stemmer og kandidat blå
har modtaget B stemmer. Hvad er sandsynligheden for at rød ville vinde
hvis man spurgte hele verden.
> Binomialfordelingen er en diskret fordeling. Den skal du bruge, hvis du
> efter at have trukket en kugle, ligger kuglerne tilbage igen før næste kugle
> trækkes. I modsat fald: Hypergeometrisk fordeling, hvor P = antal
> gunstige/antal mulige kombinationer.
Nej, jeg har garderet mig ved at sige at der er mange kugler.
Så betyder tilbagelægning intet.
Der skal jo alligevel være så mange kugler, at det giver mening at sige
at .54023405972283498298 af dem er røde.
Men læg du bare tilbage hvis du vil...
Mvh. Bjarke