Regnar Simonsen wrote:
>
> Jeg stillede en opgave til en gruppe, om at beregne sluthastigheden (både
> retning og størrelse), hvis 2 partikler kolliderer i et totalt uelastisk
> stød. A og B´s masse er kendte, og også deres starthastigheder.
> Problemet blev løst uden de store problemer med impulsbevarelse.
>
> Jeg var derefter så uforsigtig at sige, at så kunne de prøve at gennemregne
> problemet for et helt elastisk stød.
> Men det var ikke så simpelt.
> Gruppen kunne godt opstille 2 udtryk for impulsbevarelse og
> energibevarelse - og det giver 3 ligninger (bevægelsen foregår på et plant
> bord). Men sluthastighederne for de 2 partikler har 4 ukendte (VAx, VAy,
> VBx, VBy).
> Normalt løses den slags opgaver ved at transformere til
> tyngdepunktssystemet - og derefter tilbage igen. Men kan man ikke opstille 4
> ligninger uden disse transformationer; vi vil helst regne i
> laboratoriesystemet. Eller er der et andet lille trick ??
Nej. Der er kun de tre ligninger til at bestemme de fire ubekendte.
Løsningen har derfor en enkelt fri variabel.
Tænk fx på to elastisk stødende billardkugler der inden stødet har
modsatrettede hastigheder. Alt efter om stødet er helt centralt, eller
om de kun strejfer hinanden på siden, er der et helt kontinuum af
løsninger der alle overholder impuls- og energibevarelse.
--
Jeppe Stig Nielsen <URL:
http://jeppesn.dk/>. «
"Je n'ai pas eu besoin de cette hypothèse (I had no need of that
hypothesis)" --- Laplace (1749-1827)